Understanding isolated and satellite galaxies through simulations

Kenza Arraki

Blue Waters Graduate Fellow New Mexico State University

Anatoly Klypin
Daniel Ceverino
Sebastian Trujillo-Gomez
Joel Primack

Key Challenges

- Understanding galaxy evolution requires:
 - large volume
 - high spatial resolution
 - long time span
 - good time resolution
 - following of dark matter particles
 - creation of stars and treatment of feedback
 - following gas flows
- Understanding dwarf galaxy evolution requires:
 - even higher spatial resolution
 - large, well resolved volumes

NASA and ESA STScI-PRC06-10a

Why it Matters

- Still are discrepancies between theory predictions and observations on small (galaxy) scales
- Gain a better understanding of:
 - how dwarf galaxies build up their mass
 - how many satellite dwarf galaxies there are
 - morphological types of dwarf galaxies as evolution
 - how satellite and isolated dwarf galaxies differ
 - what dwarf galaxies central densities depend on
 - how dwarf galaxies impact their host galaxy
 - where the other 50% of gas mass is around our galaxy
 - what observations are required to find this gas

Project Goals

- Create galaxies that are:
 - realistic match observations on a variety of tests
 - high resolution able to examine these small scales
- Use them to learn about dwarf galaxies
 - isolated and satellite galaxies
 - abundances
 - star formation rates
 - central densities
 - morphological changes
 - tidal disruption and mass loss
 - influence on gas around galaxies

Project Goals

- Tools used to create simulations and use them to learn about dwarf galaxies
 - ART, an Adaptive Mesh Refinement (AMR) code
 - hydrodynamics + dark matter particles + star particles
 - star formation & stellar feedback (stellar winds, supernovae feedback, radiation pressure)
 - "Zoom-in" initial conditions
 - □ large simulation volume ~ 20³ Mpc³ boxes
 - high spatial resolution ~ 20 pc
 - long time span ~ 14 Gyrs
 - good time resolution ~ 1000 yrs

Accomplishments

- Code development has produced significant increase in code speed
- 25 initial conditions generated of massive galaxies with well resolved surrounding regions
- Parameter tests of isolated dwarf galaxy
- Created analysis routines and workflow
- Completed analysis of a set of simulations run with our hydrodynamical code by Daniel Ceverino

Software Products

- Hydrodynamical Simulation Code
 - New feedback implementation for radiation pressure
 - Improvements to code efficiency
 - Full parallelization of density calculations
 - Better IO practices
 - Star particle resampling
 - Different refinement schemes
- Analysis Workflow
 - Workflow for Rockstar halo finding algorithm (Peter Behroozi)
 - Fortran profiling and particle finding code
 - Python plotting and analysis routines
 - yt + ART compatibility

VELA Simulation Suite Analysis

Run by Daniel Ceverino hydrodynamical ART code

Box length = 20 /h Mpc DM mass = $8x10^4 M_{sun}$ Resolution = 17 pc

cells = 67 million # particles = 30 million

Stellar winds Supernovae feedback Radiation pressure ($\tau_{\rm IR}$ =0)

VELA Simulation Suite Analysis

10 VELA host galaxies

Possible MW progenitors

No specific environmental selection

Range of merger histories and M_{vir}

Results from redshift one

$$M_{vir} = 2x10^{11} - 1.2x10^{12} M_{sun}$$

$$M_{\text{star}} = 6x10^9 - 8x10^{10} M_{\text{sun}}$$

$$R_{vir} = 92 - 147 \text{ kpc}$$

VELA Simulation Suite Analysis

Distribution of galaxies around main halo

- •Red "x" marks the center of main halo
- •Red circle marks the 'edge' of the main galaxy
- •Blue dots are luminous dwarf galaxies
- •Black dots are dwarf galaxies without any stars (dark galaxies)

Future Work

- Run the 25 new initial conditions with our improved code
 - Volume = 100^3 Mpc³
 - Dark matter particle mass = $1.5 \times 10^5 M_{sun}$
 - Physical resolution = 40 pc
 - Produce 500 outputs per simulation (a=0.002)
- Update workflow to include time series analysis
- Run workflow on simulations
 - Select isolated and satellite dwarf galaxies
 - Compare with observations of halo mass stellar mass, star formation rates, abundance of satellites, merger rates, tidal stripping, luminosity function, circumgalactic medium, metallicity, central density, etc.

Acknowledgements

- Blue Waters Graduate Fellowship
- Steven Gordon, Bill Kramer, Jing Li, Craig Steffen
- Anatoly Klypin
- Daniel Ceverino and Sebastian Trujillo-Gomez
- Matt Turk